29 resultados para Pseudomonas aeruginosa

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: This study was undertaken to explore the use of in vitro critical inhibitory concentration (CIC) as a surrogate marker relating the pharmacokinetic (PK) parameters to in vivo bactericidal synergistic effect [pharmacodynamic (PD)] of amikacin + piperacillin combination against Pseudomonas aeruginosa in a systemic rat infection model. METHODS: The in vitro antibacterial activities of amikacin and piperacillin, alone and in combinations at various ratios of the concentrations, were tested against a standard [5 x 10(5) colony-forming units (CFU)/ml] and a large (1.5 x 10(8) CFU/ml) inoculum of P. aeruginosa ATCC 9027 using a modified survival-time method. The CIC of each individual antibiotic for the different combinations was determined using a cup-plate method. In vivo studies were performed on Sprague-Dawley rats using a systemic model of infection with P. aeruginosa ATCC 9027. PK profiles and in vivo killing effects of the combination at different dosing ratios were studied. RESULTS: An inoculum effect was observed with the antibiotics studied. Synergy was seen against both the inocula at the following concentration ratios: 70% C(ami) + 30% C(pip) and 75% C(ami) + 25% C(pip), where C(ami) and C(pip) are the concentrations of amikacin and piperacillin to produce a 1000-fold decrease in bacterial population over 5 h, respectively. The CIC values determined corroborated with the order of in vitro bacterial killing observed for the antibiotic combinations. The dosing ratio of 12.6 mg/kg amikacin + 36 mg/kg piperacillin (a 70:30 ratio of the individual doses) exhibited the greatest killing in vivo when compared to the other ratios. The PK-PD relationships were described by simple, linear regression equations using the area under the in vivo killing curve as a PD marker and the AUCIC(ami)/CIC(ami) + AUCIC(pip)/CIC(pip), AUC(ami)/CIC(ami) + AUC(pip)/CIC(pip), C(max,ami)/CIC(ami) + C(max,pip)/CIC(pip), and AUCIC(ami)/MIC(ami) + AUCIC(pip)/MIC(pip) as PK markers for the amikacin + piperacillin combination. CONCLUSION: The combination of amikacin and piperacillin exhibited synergistic killing effect on P. aeruginosa that could be modeled using CIC as a surrogate marker relating the PK parameters to in vivo bactericidal effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously reported that Pseudomonas aeruginosa PA14 secretes a protein that can reduce the apical membrane expression of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Here we report that we have used a proteomic approach to identify this secreted protein as PA2394, and we have named the gene cif, for CFTR inhibitory factor. We demonstrate that Cif is a secreted protein and is found associated with outer membrane-derived vesicles. Expression of Cif in Escherichia coli and purification of the C-terminal six-His-tagged Cif protein showed that Cif is necessary and sufficient to mediate the reduction in apical membrane expression of CFTR and a concomitant reduction in CFTR-mediated Cl− ion secretion. Cif demonstrates epoxide hydrolase activity in vitro and requires a highly conserved histidine residue identified in α/β hydrolase family enzymes to catalyze this reaction. Mutating this histidine residue also abolishes the ability of Cif to reduce apical membrane CFTR expression. Finally, we demonstrate that the cif gene is expressed in the cystic fibrosis (CF) lung and that nonmucoid isolates of P. aeruginosa show greater expression of the gene than do mucoid isolates. We propose a model in which the Cif-mediated decrease in apical membrane expression of CFTR by environmental isolates of P. aeruginosa facilitates the colonization of the CF lung by this microbe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacteria use a variety of secreted virulence factors to manipulate host cells, thereby causing significant morbidity and mortality. We report a mechanism for the long-distance delivery of multiple bacterial virulence factors, simultaneously and directly into the host cell cytoplasm, thus obviating the need for direct interaction of the pathogen with the host cell to cause cytotoxicity. We show that outer membrane–derived vesicles (OMV) secreted by the opportunistic human pathogen Pseudomonas aeruginosa deliver multiple virulence factors, including b-lactamase, alkaline phosphatase, hemolytic phospholipase C, and Cif, directly into the host cytoplasm via fusion of OMV with lipid rafts in the host plasma membrane. These virulence factors enter the cytoplasm of the host cell via N-WASP–mediated actin trafficking, where they rapidly distribute to specific subcellular locations to affect host cell biology. We propose that secreted virulence factors are not released individually as naked proteins into the surrounding milieu where they may randomly contact the surface of the host cell, but instead bacterial derived OMV deliver multiple virulence factors simultaneously and directly into the host cell cytoplasm in a coordinated manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen chronically infecting the lungs of patients with chronic obstructive pulmonary disease (COPD), pneumonia, cystic fibrosis (CF), and bronchiectasis. Cif (PA2934), a bacterial toxin secreted in outer membrane vesicles (OMV) by P. aeruginosa, reduces CFTR-mediated chloride secretion by human airway epithelial cells, a key driving force for mucociliary clearance. The aim of this study was to investigate the mechanism whereby Cif reduces CFTR-mediated chloride secretion. Cif redirected endocytosed CFTR from recycling endosomes to lysosomes by stabilizing an inhibitory effect of G3BP1 on the deubiquitinating enzyme (DUB), USP10, thereby reducing USP10-mediated deubiquitination of CFTR and increasing the degradation of CFTR in lysosomes. This is the first example of a bacterial toxin that regulates the activity of a host DUB. These data suggest that the ability of P. aeruginosa to chronically infect the lungs of patients with COPD, pneumonia, CF, and bronchiectasis is due in part to the secretion of OMV containing Cif, which inhibits CFTR-mediated chloride secretion and thereby reduces the mucociliary clearance of pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P-glycoprotein (Pgp), a member of the adenosine triphosphate-binding cassette (ABC) transporter superfamily, is a major drug efflux pump expressed in normal tissues, and is overexpressed in many human cancers. Overexpression of Pgp results in reduced intracellular drug concentration and cytotoxicity of chemotherapeutic drugs and is thought to contribute to multidrug resistance of cancer cells. The involvement of Pgp in clinical drug resistance has led to a search for molecules that block Pgp transporter activity to improve the efficacy and pharmacokinetics of therapeutic agents. We have recently identified and characterized a secreted toxin from Pseudomonas aeruginosa, designated cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif). Cif reduces the apical membrane abundance of CFTR, also an ABC transporter, and inhibits the CFTR-mediated chloride ion secretion by human airway and kidney epithelial cells. We report presently that Cif also inhibits the apical membrane abundance of Pgp in kidney, airway, and intestinal epithelial cells but has no effect on plasma membrane abundance of multidrug resistance protein 1 or 2. Cif increased the drug sensitivity to doxorubicin in kidney cells expressing Pgp by 10-fold and increased the cellular accumulation of daunorubicin by 2-fold. Thus our studies show that Cif increases the sensitivity of Pgp-overexpressing cells to doxorubicin, consistent with the hypothesis that Cif affects Pgp functional expression. These results suggest that Cif may be useful to develop a new class of specific inhibitors of Pgp aimed at increasing the sensitivity of tumors to chemotherapeutic drugs, and at improving the bioavailability of Pgp transport substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context Early pulmonary infection in children with cystic fibrosis leads to increased morbidity and mortality. Despite wide use of oropharyngeal cultures to identify pulmonary infection, concerns remain over their diagnostic accuracy. While bronchoalveolar lavage (BAL) is an alternative diagnostic tool, evidence for its clinical benefit is lacking.

Objective To determine if BAL-directed therapy for pulmonary exacerbations during the first 5 years of life provides better outcomes than current standard practice relying on clinical features and oropharyngeal cultures.

Design, Setting, and Participants The Australasian Cystic Fibrosis Bronchoalveolar Lavage (ACFBAL) randomized controlled trial, recruiting infants diagnosed with cystic fibrosis through newborn screening programs in 8 Australasian cystic fibrosis centers. Recruitment occurred between June 1, 1999, and April 30, 2005, with the study ending on December 31, 2009.

Interventions BAL-directed (n=84) or standard (n=86) therapy until age 5 years. The BAL-directed therapy group underwent BAL before age 6 months when well, when hospitalized for pulmonary exacerbations, if Pseudomonas aeruginosa was detected in oropharyngeal specimens, and after P aeruginosa eradication therapy. Treatment was prescribed according to BAL or oropharyngeal culture results.

Main Outcome Measures Primary outcomes at age 5 years were prevalence of P aeruginosa on BAL cultures and total cystic fibrosis computed tomography (CF-CT) score (as a percentage of the maximum score) on high-resolution chest CT scan.

Results Of 267 infants diagnosed with cystic fibrosis following newborn screening, 170 were enrolled and randomized, and 157 completed the study. At age 5 years, 8 of 79 children (10%) in the BAL-directed therapy group and 9 of 76 (12%) in the standard therapy group had P aeruginosa in final BAL cultures (risk difference, −1.7% [95% confidence interval, −11.6% to 8.1%]; P=.73). Mean total CF-CT scores for the BAL-directed therapy and standard therapy groups were 3.0% and 2.8%, respectively (mean difference, 0.19% [95% confidence interval, −0.94% to 1.33%]; P=.74).

Conclusion Among infants diagnosed with cystic fibrosis, BAL-directed therapy did not result in a lower prevalence of P aeruginosa infection or lower total CF-CT score when compared with standard therapy at age 5 years.

Trial Registration anzctr.org.au Identifier: ACTRN12605000665639

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface nanotopography and architecture of medical implant devices are important factors that can control the extent of bacterial attachment. The ability to prevent bacterial attachment substantially reduces the possibility of a patient receiving an implant contracting an implant-borne infection. We now demonstrated that two bacterial strains, Staphylococcus aureus and Pseudomonas aeruginosa, exhibited different attachment affinities towards two types of molecularly smooth titanium surfaces each possessing a different nanoarchitecture. It was found that the attachment of S. aureus cells was not restricted on surfaces that had an average roughness (S a) less than 0.5 nm. In contrast, P. aeruginosa cells were found to be unable to colonise surfaces possessing an average roughness below 1 nm, unless sharp nanoprotrusions of approximately 20 nm in size and spaced 35.0 nm apart were present. It is postulated that the enhanced attachment of P. aeruginosa onto the surfaces possessing these nanoprotrusions was facilitated by the ability of the cell membrane to stretch over the tips of the nanoprotrusions as confirmed through computer simulation, together with a concomitant increase in the level of extracellular polymeric substance (EPS) being produced by the bacterial cells.